Tuning and consonance are fundamental. I can constrain pitch selection to a scale, to a subset of the full set of pitches provided by the tuning system. Vertical relationships can be regulated, requiring chords to conform to some set of shapes. A variety of horizontal relationships, adjacency in a voice but also across longer scale repetition structures, can be guided more or less rigidly to some set of consonant intervals.
The large scale repetition structure of the piece is another aspect of constraint. Low dimensionality means few horizontal relationships, allowing greater freedom. High dimensionality introduces many horizontal relationships, clusters of clusters, which constrain the pitch selections.
The thermodynamic approach of my algorithm provides a temperature parameter. High temperature allows more freedom, low temperature imposes more constraint. There is generally a transition where long range order emerges, with fractal fluctuations at the transition.
In this new piece I don't target the phase transition. I gave the piece a high dimensionality, so it was tending to jump into a very orderly state. To forstall this, I initialized it randomly and then cooled it just enough to let a moderate amount of order emerge... that's another dimension of the freedom-order interplay: how the pitches are initialized, and how long the consonance optimizer is run.
This piece is in 171edo and uses the same chord shape constraint as the piece I posted a few days ago. But this piece has three voices instead of five. This gives the piece more freedom to move harmonically. My idea was that this would reduce the tendency to fall into a highly ordered state... but it didn't seem to work that way! I thought I could get away with increasing the dimension; I did keep the higher dimension, but just reduced the amount of pitch optimization jostling to preserve some of the initial freedom.
No comments:
Post a Comment